A robust and efficient method for solving point distance problems by homotopy
نویسندگان
چکیده
The goal of Point Distance Solving Problems is to find 2D or 3D placements of points knowing distances between some pairs of points. The common guideline is to solve them by a numerical iterative method (e.g. Newton-Raphson method). A sole solution is obtained whereas many exist. However the number of solutions can be exponential and methods should provide solutions close to a sketch drawn by the user. Geometric reasoning can help to simplify the underlying system of equations by changing a few equations and triangularizing it. This triangularization is a geometric construction of solutions, called construction plan. We aim at finding several solutions close to the sketch on a one-dimensional path defined by a global parameter-homotopy using a construction plan. Some numerical instabilities may be encountered due to specific geometric configurations. We address this problem by changing on-the-fly the construction plan. Numerical results show that this hybrid method is efficient and robust. Key-words: Point Distance Solving Problems, Reparameterization, Curve Tracking, SymbolicNumeric Algorithm ∗ Travail en partie effectué au laboratoire ICube. † Laboratoire ICube UMR 7357 CNRS Université de Strasbourg, bd Sébastien Brant, F-67412 Illkirch Cedex, France Une méthode robuste et efficace pour résoudre des systèmes de contraintes de distances entre points par homotopie Résumé : Le but de la résolution de problèmes de contraintes de distances entre points est de placer en 2D ou 3D un ensemble de points connaissant certaines distaces entre paires de points. De tels problèmes sont en général résolu grâce à une méthode numérique, souvent NewtonRaphson, qui ne produit qu’une solution alors qu’il en existe un nombre exponentiel. Celles ressemblant à l’esquisse sont d’un intéret particulier. Le raisonnement géométrique peut cependant aider à simplifier les sytèmes d’équations correspondant en remplaçant quelques équations, ce qui permet de les triangulariser. Une telle triangularisation est une construction géométrique des solutions et est appellée plan de construction. On se propose dans ce rapport de trouver plusieurs solutions, proches de l’esquisse sur une courbe définie par une homotopie utilisant le plan de construction pour réduire son coût. L’utilisation d’un plan de construction induit des instabilités numériques à proximité de certains points; ces instabilités sont évités en changeant le plan de construction pendant le suivi de la courbe. La méthode décrites ici a été implémentée, et les résultats obtenus montrent son efficacité et sa robustesse. Mots-clés : Problèmes de Constraintes de Distances entre Points, Re-paramétrisation, Suivi de courbes, Algorithme symbolique-numérique A Robust and Efficient Method for Solving PDSP by Homotopy 3
منابع مشابه
Solving a System of Linear Equations by Homotopy Analysis Method
In this paper, an efficient algorithm for solving a system of linear equations based on the homotopy analysis method is presented. The proposed method is compared with the classical Jacobi iterative method, and the convergence analysis is discussed. Finally, two numerical examples are presented to show the effectiveness of the proposed method.
متن کاملVARIATIONAL HOMOTOPY PERTURBATION METHOD FOR SOLVING THE NONLINEAR GAS DYNAMICS EQUATION
A. Noor et al. [7] analyze a technique by combining the variational iteration method and the homotopy perturbation method which is called the variational homotopy perturbation method (VHPM) for solving higher dimensional initial boundary value problems. In this paper, we consider the VHPM to obtain exact solution to Gas Dynamics equation.
متن کاملAn assessment of a semi analytical AG method for solving two-dimension nonlinear viscous flow
In this investigation, attempts have been made to solve two-dimension nonlinear viscous flow between slowly expanding or contracting walls with weak permeability by utilizing a semi analytical Akbari Ganji's Method (AGM). As regard to previous papers, solving of nonlinear equations is difficult and the results are not accurate. This new approach is emerged after comparing the achieved solutions...
متن کاملT-Stability Approach to the Homotopy Perturbation Method for Solving Fredholm Integral Equations
The homotopy perturbation method is a powerful device for solving a wide variety of problems arising in many scientific applications. In this paper, we investigate several integral equations by using T-stability of the Homotopy perturbation method investigates for solving integral equations. Some illustrative examples are presented to show that the Homotopy perturbation method is T-stable for s...
متن کاملAugmented Lagrangian method for solving absolute value equation and its application in two-point boundary value problems
One of the most important topic that consider in recent years by researcher is absolute value equation (AVE). The absolute value equation seems to be a useful tool in optimization since it subsumes the linear complementarity problem and thus also linear programming and convex quadratic programming. This paper introduce a new method for solving absolute value equation. To do this, we transform a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 163 شماره
صفحات -
تاریخ انتشار 2017